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Abstract

The dynamic response of a cracked piezoelectric ceramic under in!plane electric and anti!plane mechanical
impact is investigated by the integral transform method[ The electric and mechanical loads are assumed to
be arbitrary functions of time[ It is shown that the dynamic crack!tip stress and electric displacement _elds
still have a square!root singularity[ Numerical computations for the dynamic stress intensity factor show
that the electric load has a signi_cant in~uence on the dynamic response of stress _eld[ On the other hand\
the dynamic response of the electric _eld is determined solely by the applied electric _eld[ The electric _eld
will promote or retard the propagation of the crack depending on the time elapsed since the application of
the external electro!mechanical loads[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The elasto!static and dynamic response of piezoelectric materials and their failure modes have
attracted considerable attention from many researchers recently[ The crack extension force in a
piezoelectric material in anti!plane shear "mode III# was calculated by Pak "0889# who showed
that the mode III stress intensity factor will always be negative in the absence of mechanical
loading[ This result was con_rmed in the work of Sosa and Pak "0889# who used an eigenfunction
analysis[ Sosa "0881# showed that even in mode I the stress intensity factor could be negative for
some ratios of electrical to mechanical loading[ Shindo and Ozawa "0889# investigated the steady!
state response of a cracked piezoelectric material under the action of incident plane\ harmonic
waves[ A _nite crack in an in_nite piezoelectric material under anti!plane dynamic elec!
tromechanical impact was investigated with the well!established integral transform methodology
"Chen and Yu\ 0886#[ Axisymmetric vibrations of a piezocomposite hollow cylinder were studied
by Paul and Nelson "0885#[ The dynamic representation formulas and fundamental solutions for
piezoelectricity had been proposed earlier by Khutoryansky and Sosa "0884#[
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Descalu and Maugin "0884# studied the elastodynamic fracture of piezoelectric materials in the
quasi elasto!static approximation using Stroh|s formalism[ They showed\ in particular\ that if a
mode III crack is subjected gradually to remote mechanical and electrical loadings up to the
moment when it begins to grow which are then held constant\ the crack growth is strongly
in~uenced by the applied electric _eld in a certain range[ Below this range the electric _eld had no
in~uence on the mechanical driving force\ whereas above it the crack would stop growing[

The dynamic response of a cracked dielectric medium under the action of harmonic waves in a
uniform electric _eld was studied by Shindo and his colleagues "Shindo et al[\ 0885#[ In their most
recent work\ Narita and Shindo "0887# investigated the scattering of Love waves by a surface!
breaking crack normal to the interface in a piezoelectric layer over an elastic half plane[ This work
is very valuable for the reliability design of piezoelectric devices[ Li and Mataga "0885a\ b# studied
a semi!in_nite crack propagating in a piezoelectric material with electrode and vacuum boundary
conditions on the crack surface\ respectively[ In their work\ the transient dynamic electro!mech!
anical loads were taken into consideration[ A new phenomenon about the surface waves in
piezoelectric materials was reported[

Instead of the harmonic waves as the external loads\ as in the work of Shindo and his colleagues\
transient dynamic loads of arbitrary time variation are considered in the present work[ The
dynamic stresses and electric displacement around the crack tip are obtained[ When the loads have
the form of the Heaviside step function\ the present results will reduce to those of Chen and Yu
"0886#[

1[ Description of the problem and fundamental solution

Consider an in_nite piezoelectric body containing a _nite crack subjected to mechanical and
electrical impacts[ Let the length of the crack be 1a[ A set of Cartesian coordinates "x\ y\ z# is
attached at the center of the crack for reference purposes[ The x!axis is directed along the line of
the crack and y!axis along the direction of the perpendicular bisector of the crack[ The poled
piezoelectric ceramic with z as the poling axis occupies the region "−� ³ x ³ �\ −� ³ y ³ �#[
It is su.ciently thick in the z!direction to allow a state of anti!plane shear to exist[ Because of
the assumed symmetry in geometry and loading\ it is su.cient to consider the problem for
9 ³ x ³ �\ 9 ¾ y¾� only[

The piezoelectric boundary!value problem for anti!plane shear is considerably simpli_ed if we
consider only the out!of!plane displacement and the in!plane electric _elds such that the constitutive
equations can be written as

tzk � c33w\k¦e04f\k "0#

Dk � e04w\k−o00f\k "1#

where tzk\ Dk "k � x\ y# are the anti!plane shear stress and in!plane electric displacement\ respec!
tively\ c33\ e04\ o00 are the shear modulus\ piezoelectric coe.cient and dielectric parameter\ respec!
tively^ w and f are the mechanical displacement and electric potential[ The dynamic anti!plane
governing equations for piezoelectric materials are "Shindo and Ozawa\ 0889#

c3391w¦e0491f � r 11w:1t1 "2#
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e0491w−o0091f � 9 "3#

where 91 � 11:1x1¦11:1y1 is the two!dimensional Laplace operator[ Body force\ other than inertia\
and the free charge are ignored in the present work[ It is worth mentioning that the _eld eqns "2#
and "3#\ for anti!plane deformation can also be derived by considering the so!called BleusteinÐ
Gulayev SH surface waves "Maugin\ 0877\ 0882#[

Substituting "3# into "2#\ gives the equation of wave motion

91w � c−1
1 11w:1t1 "4#

in which c1 � zm:r^ m � c33¦e1
04:o00[

Equation "4# has the following solution in Laplace transform domain with respect to time "Chen
and Yu\ 0886#

w�"x\ y\ p# �
1
p g

�

9

ðA0"s\ p# exp"−gy#¦A1"s\ p# exp"gy#Ł cos"sx# ds "5#

where

g"s\ p# � zs1¦c−1
1 p1 "6a#

w�"x\ y\ p# � g
�

9

w"x\ y\ t# exp"−pt# dt "6b#

in which {p| is the Laplace transform parameter[ An asterisk denotes the Laplace transform
throughout the paper[

Inserting "5# into "3#\ we have

f�"x\ y\ p# �
e04

o00

w�"x\ y\ p#¦c�"x\ y\ p# "7#

where

c�"x\ y\ p# �
1
p g

�

9

ðA2"s\ p# exp"−sy#¦A3"s\ p# exp"sy#Ł cos"sx# ds "8#

Substituting "7# into the Laplace transforms of "0# and "1#\ we have

t�zk � mw�\k¦e04c�\k "09#

D�k � −o00c�\k "00#

The boundary conditions of the present problem are]

tzy"x\ �\ t# � Dy"x\ �\ t# � 9\ 9 ³ x ³ � "01a#

tzy"x\ 9\ t# � −t9f"t# 9 ³ x ³ a "01b#

Dy"x\ 9\ t# � −D9`"t# 9 ³ x ³ a "01c#
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w"x\ 9\ t# � f"x\ 9\ t# � 9\ x × a "01d#

The Laplace transform of "01# yields

t�zy"x\ �\ p# � D�y"x\ �\ p# � 9\ 9 ³ x ³ � "02a#

t�zy"x\ 9\ p# � −t9f�"p#\ 9 ³ x ³ a "02b#

D�y"x\ 9\ p# � −D9`�"p#\ 9 ³ x ³ a "02c#

w�"x\ 9\ p# � f�"x\ 9\ p# � 9\ x × a "02d#

Substitution of "5#\ "7# and "8# into "09# and "00#\ and of the resulting expressions into "02a#\
yields

A1"s\ p# � A3"s\ p# � 9 "03#

The problem therefore reduces to the determination of the two unknown functions A0"s\ p# and
A2"s\ p#[ For this\ the method developed by Chen and Yu "0886# can be used[

From "5# and "8#\ we have

1w�"x\ 9\ p#
1y

�
1
p g

�

9

−gA0"s\ p# cos"sx# ds "04#

1c�"x\ 9\ p#
1y

�
1
p g

�

9

−sA2"s\ p# cos"sx# ds "05#

Inserting "5# and "7# into "09# and "00#\ and the resulting expressions into "02b# and "02c#\ gives

1w�"x\ 9\ p#
1y

� −
0
m

ðt9 f �"p#¦e04D9`�"p#:o00Ł\ 9 ³ x ³ a "06#

1c�"x\ 9\ p#
1y

� −
D9

o00

`�"p#\ 9 ³ x ³ a "07#

From "04#Ð"07#\ and the consideration of the boundary condition "02d#\ we get two pairs of dual
integral equations

1
p g

�

9

A0"s\ p# cos"sx# ds � 9\ x × a

1
p g

�

9

g"s\ p#A0"s\ p# cos "sx# ds �
0
m

ðt9 f �"p#¦e04D9`�"p#:o00Ł\ 9 ³ x ³ a "08#

and
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1
p g

�

9

A2"s\ p# cos"sx# ds � 9\ x × a

1
p g

�

9

sA2"s\ p# cos"sx# ds �
D9

o00

`�"p#\ 9 ³ x ³ a "19#

With the aid of CopsonÐSih|s method "Chen and Sih\ 0866^ see also Wang and Karihaloo\ 0883#\
the solution of equation "08# can be written as follows

A0"s\ p# �
pa1

1m
ðt9 f �"p#¦e04D9`�"p#:o00Ł g

0

9

zjf�2"j\ p#J9"saj# dj "10#

where J9"=# is the zero!order Bessel function of the _rst kind\ while f�2"j\ p# is determined by the
following Fredholm integral equation of the second kind

f�2"j\ p#¦g
0

9

K2"j\ h\ p#f�2"h\ p# dh � zj "11#

The kernel of the integral equation is

K2"j\ h\ p# �"jh#0:1 g
�

9

sðg"s:a\ p#−0ŁJ9"sj#J9"sh# ds "12#

Similarly\ the solution of eqn "19# can be written as

A2"s\ p# �
paD9

1o00ps
J0"as#`�"p# "13#

Substituting the results "5# and "8# and the resulting expressions into "09# and "00#\ gives the
anti!plane mechanical displacement\ electric potential\ stress and electric displacement _elds in the
domain of Laplace transform[ The inverse Laplace transform eventually gives the relevant time!
dependent results[

2[ Crack tip _elds and dynamic intensities of stress and electric displacement

Let the crack tip be the origin of the polar coordinate system

r exp"iu# � x−a¦iy "14#

where i � z−0 "Fig[ 0#[
From the above results\ the stress and electric displacement around the crack tip can be expressed

as "Chen and Sih\ 0866#

tzy¦itzx �
kt

2"p#

z1pr
exp"−iu:1#¦O"0# "15#
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Fig[ 0[ Cracked piezoelectric ceramic under arbitrary anti!plane mechanical and electric impact[

Dy¦iDx �
kD

2 "p#

z1pr
exp"−iu:1#¦O"0# "16#

where

kt
2"t# � ð"t9M"t#¦e04D9N"t#:o00#−e04D9`"t#:o00Łzpa "17#

kD
2 "t# � D9zpa`"t# "18#

and

M"t# �
0

1pi g
c¦i�

c−i�

f�2"0\ p# f�"p# exp"pt# dp "29#

N"t# �
0

1pi g
c¦i�

c−i�

f�2"0\ p#`�"p# exp "pt# dp "20#

The function f�2"0\ p# can be calculated from "11#[ For a given form of the loading functions\
the dynamic intensities of stress and electric displacement can be obtained from "17# and "18#[

3[ Numerical example and discussion

For simplicity\ the functions f"t# and `"t# are assumed in the form of a Heaviside step function\
that is f"t# � `"t# � H"t#\ where\ H"t# � 0 for t × � 9 and H"t# � 9 for t ³ 9[ In the calculations
to follow\ the ratio "e04D9:o00#:t9 is assigned the value 9[9\ 9[0\ 9[1 or 9[4[ The dynamic stress
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Fig[ 1[ Normalized dynamic stress intensity factor vs normalized time as a function of the ratio of the electric load to
the mechanical load[

intensity factor "DSIF# is plotted in Fig[ 1\ which shows the in~uence of the applied electric _eld[
At the very beginning of the loading process\ the DSIF even becomes negative in the presence of
the electric _eld[ In other words\ the electric _eld will retard the propagation of the crack[ However\
when the normalized time exceeds about 0[1\ DSIF increases with increasing electric load\ so that
the electric _eld promotes the propagation of the crack[ However\ when the normalized time
exceeds about 4[9\ there is an opposite trend in the DSIF with the variation of electric _eld[ It can
be concluded that the dynamic electric _eld will promote or retard the propagation of the crack at
di}erent sages of the loading process[ The e}ect of the electric _eld on the DSIF is independent of
the direction of the electric _eld[

The situation considered here\ namely that both the mechanical and electrical loadings are
applied suddenly at t � 9\ is di}erent from that considered by Dascalu and Maugin "0884#\ namely
that the mechanical and electrical loadings are increased gradually up to the moment of the onset
of crack growth\ whereafter they are held constant[ For the elasto!dynamic situation considered
by Dascalu and Maugin "0884#\ it was found that in the normalised time interval between 9 and
1\ under an applied shear traction t9 � 3[1 MPa\ only an applied electric _eld E�

1 in the range
0×093Ð3[3×093 V:m has a strong in~uence on the crack growth[ The crack evolution due to the
applied shear traction is una}ected by the electric _eld if its strength is less than 0×093 V:m[ On
the other hand\ the crack stops growing if this strength exceeds 3[3×093 V:m[

In the present notation\ and using eqn "3[07# from the paper by Dascalu and Maugin "0884#\
the above range of E�

1 corresponds to the following range of the non!dimensional parameter
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9[5 ¾"e04D9#:"o00t9# ¾ 9[71 for t9 � 3[1 MPa and the material properties of PZT used in that paper[
In other words\ if "e04D9#:"o00t9# ¾ 9[5\ the electric _eld has no in~uence on the stress intensity
factor due to mechanical loading\ if both the mechanical and electrical loadings are applied
gradually[ The present results show that the stress intensity factor is reduced even when this ratio
is as small as 9[0[ It can thus be concluded that electro!mechanical loading applied suddenly has a
greater retardation in~uence upon the crack growth in the early stages "normalised time less than
0[1# than does the same loading\ if it is applied gradually[

4[ Conclusion

The anti!plane dynamic fracture problem of a cracked piezoelectric ceramic was reduced to the
solution of two pairs of dual integral equations by using the methodology of integral transforms[
By solving a Fredholm integral equation of the second kind\ all the relevant quantities such as the
anti!plane mechanical displacement\ electric potential\ stress and electric displacement\ etc[\ can
be easily obtained[ The numerical example showed that the dynamic electric _eld will promote or
retard the propagation of the crack at di}erence stages of the dynamic loading process[ However\
the dynamic electric displacement factor is coherent with the external electric load\ independently
of the mechanical load[
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